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Normal modes of shallow water waves in a channel wherein the Coriolis parameter and 
the depth vary in the spanwise direction are investigated based on the conservation of 
the number of zeros in an eigenfunction. As a result, it is generally shown that the 
condition for transition modes (Kelvin modes and mixed Rossby-gravity modes) to 
exist, besides Rossby and PoincarC modes, is determined only by boundary conditions. 
A Kelvin mode is interpreted as a modification of a Kelvin wave or a boundary wave 
along a closed boundary, and a mixed Rossby-gravity mode as a modification of an 
inertial oscillation or a boundary wave along an open boundary. Transition modes 
appearing in edge and continental-shelf waves, equatorial waves and free oscillations 
over a sphere are systematically understood by applying the theory in this paper. 

1. Introduction 
When we investigate wave phenomena in the atmosphere and in the oceans, we often 

treat problems of shallow water systems. It is well known that in a rotating shallow 
water system there exist families of PoincarC modes (inertial gravity modes) 
propagating in the positive and negative directions and a family of Rossby modes. 
Each family includes infinite modes, although the Rossby modes degenerate to steady 
geostrophic modes in special cases where the potential vorticity of the basic statef/H 
is constant. 

Edge and continental-shelf waves considered in physical oceanography is one 
example of rotating shallow water systems. Among various theories on edge and 
continental-shelf waves, the simplest model is studied by Reid (1958), who dealt with 
a semi-infinite sloping shelf with constant gradient as shown in figure l (a) .  In his 
model, besides the families of PoincarC and topographic Rossby modes, a Kelvin-wave- 
like mode exists, which behaves like a Rossby wave when the wavenumber is small 
while it resembles a gravity wave as the wavenumber increases. (In his paper, this mode 
was labelled as j = 2, n = 0.) In the model investigated by Iga (1993) wherein a slope 
with constant gradient is followed by a flat bottom with a rigid lid (figure 1 b), a Kelvin- 
wave-like mode also exists (which he called the M,-mode), though his intention was not 
to study waves trapped on a coast, but to interpret instability modes present in a two- 
layer model. As well as these cases, a Kelvin-wave-like mode usually exists in problems 
of edge and continental-shelf waves. Huthnance (1975) discussed generally the 
problems of waves over a continental shelf, and showed that under certain 
circumstances a single mode like a Kelvin wave exists besides families of Poincard 
modes propagating in the positive and negative directions and a family of Rossby 
modes, although the two examples mentioned above are beyond his general theory. 

However, in a similar problem of edge and continental-shelf waves examined by 
Mysak (1968), wherein the sloping shelf has a finite width that drops off vertically into 
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FIGURE 1. Various edge and continental-shelf wave problems. (a) A sloping shelf with constant 
gradient continues semi-infinitely. (b) A sloping shelf is followed by a flat bottom with a rigid lid. (c) 
A sloping shelf with a finite width drops off vertically into deep ocean. 

infinitely deep ocean (figure 1 c), all modes are distinctly separated into either low- or 
high-frequency modes, and there is no mode which shifts from a low-frequency region 
to a high-frequency region as the wavenumber varies. These results show that a mode 
like a Kelvin wave exists in certain models, but does not in very similar other models. 
Why does a Kelvin-wave-like mode appear in certain cases and not in others that are 
only slightly different? 

Incidentally, the mode of mixed Rossby-gravity waves present in the equatorial 
B-plane shifts from the region of Rossby waves to that of gravity waves with the change 
of wavenumber (Matsuno 1966). However, this mixed Rossby-gravity mode behaves 
in the opposite manner to the modes like a Kelvin wave mentioned above: it has 
features like a Rossby wave when the wavenumber is large and approaches inertial 
gravity waves as the wavenumber decreases.? Moreover, a mode called Kelvin wave 
also exists in equatorial waves. 

Furthermore, in free oscillations on a rotating sphere, a mode like a Kelvin wave and 
a mode like a mixed Rossby-gravity wave both exist, although the parameter which 
vanes continuously in this problem is not the wavenumber (Longuet-Higgins 1968). 

As we see from these examples, in rotating shallow water systems, besides the 
families of Poincar6 and Rossby modes, modes which do not completely belong to 
either family sometimes but not always appear. The aim of this paper is to give a simple 
criterion to judge whether modes like Kelvin or mixed Rossby-gravity waves (we will 
call these modes transition modes in this paper) exist. In 92, we will discuss the general 
theory for such modes, according to the conservation of the number of zeros in an 
eigenfunction, and by investigating the behaviour of the dispersion curves in large- and 
small-wavenumber limits. In 53, we will interpret the result in physical terms. After 
expanding the theory in 94, we will apply it to well-known systems such as edge and 
continental-shelf waves and equatorial waves. 

t The mode of mixed Rossby-gravity wave is so called because its nature changes from that of 
Rossby waves to that of inertial gravity waves as the wavenumber shifts. There seem to be. two ways 
of looking at  this feature. One is that this mode behaves like a Rossby mode at large wavenumbers, 
and becomes like an inertial gravity wave when the wavenumber is small. The other is that, taking 
the negative-wavenumber region also in consideration, the nature of this mode varies from that of a 
Rossby wave to that of a inertial gravity wave, between positive and negative infinite wavenumber 
limits. In this paper, we will use the former meaning, following the original paper by Matsuno (1966). 
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2. General theory for transition modes 
2.1. Basic equations and boundary conditions 

We will consider shallow water waves in a channel of width y, < y < yz uniform in 
the x-direction. The linearized basic equations whose solutions are proportional to - -  

ioU = jV- ikgHy, 
-iwV = --fCI-gHdy/dy, 
-iwy = -ikU-dV/dy, 

where (V,  V) = (Hu, Hv) is the mass flux, y the vertical displacement of the free surface, 
f the Coriolis parameter, g the acceleration due to gravity, and H the depth of the fluid. 
The values off and H may vary in the y-direction, but we assume d/dyu/H) > 0 and 

We will examine a variety of boundary conditions, as shown in figure 2, in order for 
this theory to be as general as possible. The boundary conditions considered here are 
as follows: (a) v = 0 (so-called rigid boundary); (b)  H = 0 at the boundary, and the 
variables remain finite (a model of a beach or a continental shelf; since H does not 
vanish at y =  y1 on account of the assumption d/dyu/H)>O, this boundary 
condition is applied only to the boundary y = y2); (c) y = 0 (the depth of the fluid 
suddenly becomes infinite at this boundary and the region of H = co extends beyond) ; 
(d )  H+.  00 (at finite y )  and the variables remain finite (from the equation of continuity, 
y vanishes at this boundary, and this case is almost the same as case (c ) ;  on account 
of the assumption, this is applied only to the boundary y = y l ) ;  (e) u = iv or ky = 
dy/dy for y = yl, u = -iv or ky = -dy/dy for y = y ,  (this boundary condition is 
applied to a boundary beyond which there is a region with a rigid lid, constant depth 
and constant Coriolis parameter (Orlanski 1968 ; Iga 1993)); cf) y1 + - co(y2 + + a), 
and the variables converge to zero (in order for all the modes to be trapped, either f 
or H must be infinite (Huthnance 1975); owing to the assumption, H is infinite as 
yl+.-co, and f is infinite as y,++co). 

2.2. De3nition of each mode 
Before solving the governing equations under the boundary conditions given above, we 
must define how to classify the modes in our problem. In this paper, we define each 
mode according to the behaviour of the dispersion curves in small- and large- 
wavenumber limits (figure 3): Rossby modes for which o vanishes as k+O and o 
remains finite (including zero) as k +  co; PoincarC modes for which w remains finite as 
k + 0 and 101 becomes infinite as k +. 00 ; Kelvin modes for which w vanishes as k + 0 
and 101 becomes infinite as k+ 00 ; and mixed Rossby-gravity modes for which o 
remains finite as k+O and o remains finite (including zero) as k+  co. 

This definition is consistent with the nomenclature in the well-known examples given 
in the introduction. Further, we will call Kelvin and mixed Rossby-gravity modes 
‘transition modes ’, because they both shift from the Rossby-wave region to the inertial 
gravity-wave region with the change of wavenumber, and have intermediate features. 

2.3. Conservation of the number of zeros of U 
By investigating the eigenvalues and the eigenfunctions in limiting cases of k +  0 and 
k+ 00 and connecting them with the aid of some marker, we can identify each mode 
defined above. In this subsection, we show that the number of zeros pertaining to U 
of the eigenfunction can be used as such a marker, because they are conserved for each 
mode even if the wavenumber shifts. 

f >  0. 
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FIGURE 2. Boundary conditions considered: (a) u = 0, (b) H = 0, (c) 7 = 0, (d)  H +  co, 
(e) u = +iu, (j) semi-infinite region. 

w w 

FIGURE 3. Sketches of the dispersion curves: (a) Poincart mode, (b) Rossby mode, (c) Kelvin 
mode, ( d )  Mixed Rossby-gravity mode. 

Eliminating U from (2.1), (2.2) and (2.3), we get the differential equations for V 
and ?I: 

dV 
(wz - k2gH) 7 = i k p -  iw -. 

dY 
(2.5) 
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From (2.4) and (2.5), V and 3 (more strictly, V, u, q and Hq) do not simultaneously 
vanish for the same y, Otherwise, this would lead to V = 0, q = 0, and consequently 
U = 0, which would mean that the eigenvector is a null vector. 

In order for the number of zeros of U to change with the shift of k, a zero of U must 
enter or leave of the region across one of the boundaries. However, this only occurs in 
two cases: where the boundary condition is q = 0 at y = y, and simultaneously 
fly,) = 0 holds; and where the boundary condition at y = y, is H = 0. If a zero of U 
crossed this boundary, U would vanish there and would yield ifv+ kgHq = 0 from 
(2.1). Then, we would obtain q = V = 0 for any boundary condition except for the two 
cases mentioned above. (The boundary condition H -+ 00 requires extra care, but in this 
case (2.1) and (2.2) yield not only q = 0 but also Hq = 0, which permits the same 
result .) 

Strictly speaking, pairs of zeros of U may appear or disappear in the interior region, 
which also alters the number of zeros of U. This is discussed in detail in Appendix A. 
We discuss the case of the boundary condition q = 0 at y = y, and fly,) = 0, and the 
case of the boundary condition H = 0 at y = ye in Appendix B. In spite of these 
exceptions, we can basically state that the number of zeros of U conserve; we have only 
to modify the discussion a little in such exceptional cases, as shown in Appendices 
A, B. 

2.4. Equations and boundary conditions in limiting cases 
In this subsection, we will investigate eigenfunctions in limiting cases of k+O and 
k+ 00. First, we will obtain simplified equations in the interior for limiting cases. 

(i) k + 0 and w +finite (x-direction-uniform limit) 
Neglecting the terms including k in (2.1), (2.2) and (2.3), we get 

These equations express the one-dimensional motions uniform in the x-direction. 
Eliminating U and q, we obtain the equation for V: 

(ii) k -+ 0 and w -+ 0 (semi-geostrophic limit) 
The terms including k or w become small in (2. l), (2.2) and (2.3). Moreover, V must 

become small at the same order, otherwise there would be no other term which 
balances the term for V in (2.1) or (2.3). Thus, we obtain 

These express the semi-geostrophic motions, which implies the complete geostrophic 
balance in the y-direction. Eliminating U and V, we obtain the equation for q :  
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(iii) k --f 00 and Iwl+ 00 (non-rotating limit) 
In (2.1), (2.2) and (2.3), we will retain the terms including k or w. Furthermore, we 

will also retain the terms containing the derivative with respect to y ,  because they 
become important somewhere in the region. Thus, we get 

These correspond to the non-rotating case where the effect of the rotation f is 
neglected. Eliminating U and V, we obtain the equation for 7: 

(iv) k + 00 and w +jinite (non-divergent limit) 
We will retain the terms with k and the terms containing the derivative with respect 

to y in (2.1), (2.2) and (2.3). Furthermore, q must be small in order for the term for r ]  
to be comparable with other terms in (2.1) and (2.2). Hence, we obtain 

drl dV -iwU =fv- ikgHq,  -iwV = - f u - g H - ,  0 = -ikU--. 
dY dY 

These correspond to the non-divergent case with a rigid lid above. Eliminating U and 
7, we obtain the equation for V: 

(2.9) 

The boundary conditions are also simplified in the limiting cases. We show the 
simplified boundary conditions together with the conversion formulae from the 
variable V or q to U in each limiting case in table 1. Now we have only to solve (2.6), 
(2.7), (2.8) or (2.9) under each combination of boundary conditions as an eigenvalue 
problem with respet to the eigenvalue of w2 or - l/w. Note, however, that for w = f l y , )  
(or - f ly2) )  which arises from the boundary condition u = +iv  in the limiting case 
k --f 0, w-+ finite, we can always find a function satisfying this condition. Therefore, we 
must add the eigenvalue of w = f l y l )  (or - f ly , ) )  to the set of eigenvalues obtained 
from the condition V = 0. 

The eigenvalue problems to solve in each limiting case have many combinations of 
boundary conditions; most of them are of Sturm-Liouville type, for which it is well- 
known that there is a series of a countable infinite number of positive eigenvalues 
0 < A, c A, c A, c . . . and that the eigenfunctionq,( y )  corresponding to the eigenvalue 
A, has n zeros in the interior region (e.g. Courant & Hilbert 1931). For the problems 
considered here, some boundary conditions include eigenvalues in their expressions, 
and therefore are not precisely Sturm-Liouville problems. Nevertheless, we have only 
slightly to modify the conclusions on their eigenvalues and the eigenfunctions as 
follows. The proof is given in Appendix C. 

THEOREM. In the case where the boundary condition at y = y 1  is v = 0,  in the limit of 
k --f 0, w --f 0 or in the case where the boundary condition at y = yz is q = 0, in the limit 
of k- t  00, o+Jinite, there is only one negative eigenvalue A_, c 0 and there are an 
infinite number of positive eigenvalues 0 < A, c A, c Az c . . . . The eigenfunction ~p-~(y) 
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FIGURE 4. Behaviour of zeros of U near a boundary of the region for small (large) but finite k, in the 
case where a zero of U is located exactly at the boundary when k vanishes (becomes infinity). When 
k remains finite, a zero of U exists in the interior in some cases and not in others. 

Domain 

Boundary 
conditions {:<kite 

v = O  

H=O 

" O }  -&= d V  0 
H+CC 

7]=0 7]=0 

TABLE 1. Boundary conditions expressed in terms of Vor q in each limiting case. Conversion formulae 
from V or q to U are also shown. The upper signs in the row for boundary condition u = io denote 
the condition applied for y = y,, and the lower signs for y = y, 

corresponding to A_, has no zero in the interior region, and the eigenfunctions vn(y) 
corresponding to A,(n 2 0)  have n zeros in the interior region. In other cases, the result 
is the same as the Sturm-Liouville problem, even if the boundary condition includes the 
eigenvalue : there is an infinite number of positive eigenvalues 0 < A, < A, < A, < . . . and 
the eigenfunctions F,( y )  corresponding to A, have n zeros in the interior region. 

From this theorem, we can count the number of zeros pertaining to V of the 
eigenfunction in the limiting cases of k+ 0, w + finite and k --f 00, w --f finite, and the 
number of zeros pertaining to 7 in the limiting cases of k+O, o+ 0 and k- t  CQ, 

IWI --f 00. 
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FIGURE 5. Sketches of V or 11 and U for the three gravest modes in each limiting case. Zeros in the 
interior region are indicated by solid circles. Zeros of U located exactly at the boundary (indicated 
by open circles) may enter the interior region or disappear to the exterior when k becomes finite, 
depending on the sign of w .  Hence, the number of zeros of U for finite k are shown for both signs 
of w. Only the case u = 0 at y = yI, 7 = 0 at y = ys is shown, but we can easily draw similar figures 
for other combinations of boundary conditions. 

2.5. The number of each mode 
Since we already know the number of zeros of Y or 7 in each limiting case, we can also 
count the number of zeros of U, using the conversion formulae from Vor T,I to Uin each 
case. We must, however, take care in some cases : those where a zero of U exists at the 
boundary in the limiting case. We must ascertain whether the zero of Ulocated exactly 
at the boundary in the limiting case is originated from the interior or exterior region 
when the parameter (wavenumber for the present) remains finite (figure 4). A 
discussion on such zeros of U is given in Appendix D. Considering such behaviour of 
U near the boundaries, we count the number of zeros of U for each mode. Only the case 
v = 0 at y = y l ,  T,I = 0 at y = y, is shown in figure 5, but we can count the zeros similarly 
in other cases. 

Now that we know the number of zeros of U in each limiting case, we can connect 
the limiting cases of large and small wavenumbers using the dispersion curves, on the 
basis of the conservation of zeros of U. The connections for various boundary 
conditions are shown in figure 6. Further, the boundary condition H +  co is identical 
to the boundary 7 = 0, since the condition H +  03 leads to the condition T,I = 0. The 
boundary condition H = 0 results in the same conclusions as the boundary condition 
v = 0, as shown in Appendix B, and we can easily see that the cases of y ,  + - 00 and 
y ,  + + co are the same as the boundary condition u = k iv. (The boundary condition 
y1 + - 00 or y ,  -+ + 00 is expressed as r] + 0 for the semi-geostrophic limit and the non- 
rotating limit, and as V+O for the x-direction-uniform limit and the non-divergent 
limit; these are the same as for the boundary condition m = 0, which we will discuss 
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FIGURE 6. Sketches of the dispersion curves f0.r each combination of the boundary conditions. 
Numbers indicate how many zeros of U exist in the interior region. Modes shifting to a different 
group between k + 0 and k -+ CQ are transition modes. 

in 54.3.) From figure 6, we see the following features. There are infinite Poincark modes 
consisting of the family with w > 0 and that with w < 0. There are also infinite Rossby 
modes, whose frequencies are negative except for the gravest mode in the case where 
the boundary conditions are v = 0 at y = y1 and r] = 0 at y = ya. Aside from these, 
there may be transition modes, depending on the boundary conditions. In table 2, we 
show which transition modes exist for each combination of boundary conditions. 
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Y = Y2 

} K with w < O  None M with w > 0 

M with w > 0 
M with w < 0 

u = iv 
Y 1 + - W  

' V = o  } None M with w <  0 { H + a  
TABLE 2. Transition modes for each combination of boundary conditions. K indicates a Kelvin 

mode and M a mixed Rossby-gravity mode 

3. Explanation of transition modes in terms of boundary waves 
Discussion in the previous section has enabled us to determine mathematically the 

condition for transition modes to exist, but how should we understand this result in 
physical terms? In this section, we will explain the result by relating transition modes 
to boundary waves. 

First, we will briefly review the Kelvin waves. A typical Kelvin wave exists in a semi- 
infinite region of constant depth bounded by a rigid wall, and its velocity component 
normal to the boundary is identically zero. In other words, if we let f be constant in 
(2.1), (2.2) and (2.3), and the boundary conditions are 

u = O  at y = O ,  variables+O as y+m,  

a mode satisfying V = 0 exists: 

= k(gH)'/2, (u, v, 7) = ((gH)1'2, O, l) exp [ - Iydy/A,(y)], 

where AR(y) = (gH)lI2/f(y), (3.1) 

which is typically called a Kelvin wave. This wave decays exponentially away from the 
boundary y = y1 unless A, strongly varies, and has the nature of a boundary wave 
whose energy is trapped near the boundary. Therefore, if we define the mode with 
w = k(gH(y1))'I2 as the corresponding typical Kelvin wave for the boundary condition 
u = 0 at y = yl, and w = -k(gH(y2))'12 for the boundary condition v = 0 at y = y2 ,  we 
can expect almost the same mode as this corresponding typical Kelvin wave to exist in 
more general cases with varying depth or with a finite region, as long as the boundary 
condition u = 0 is retained. 

However, for the boundary conditioin H(y2) = 0, defining the corresponding typical 
Kelvin wave in the above manner would cause the frequency to vanish and is therefore 
inadequate. In this instance, we should regard as the corresponding typical Kelvin 
wave the mode which appears when H = (-dH/dy I,-,,)(y2-y),f=f(y,), namely the 
Kelvin-wave-like mode present in Reid's model for edge and continental-shelf waves : 

(3.2) I (0 = t m 2 >  - + 4kW21, 

(u, v, 7) = (-S(Y2--Y)9-iS(y2--Y)7 (w+f(y2)) / (kg))  e-k(v2-v)7 
where S -dH/dy(v=ue. 

A similar argument applies to the boundary condition 7 = 0 (or H +  a). Just as a 
wave of V = 0 exists under the boundary condition v = 0, a boundary wave whose 
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u = 10 
0 = 0  { Y ,  +-a3 ( L 2  
Kwithw>O None I with w < 0 

Y = Y ,  

0 = 0  u = -iv 

K with w < 0 

? l = o  { H = O  { Y ,  ++a 
None I with w > 0 

TABLE 3. Boundary waves for each boundary condition. K indicates a Kelvin wave 
and I an inertial oscillation 

surface elevation identically vanishes is present in a semi-infinite region with constant 
Coriolis parameter bounded by an open boundary of r ]  = 0. That is, if we let f be 
constant in (2. l), (2.2) and (2.3), and the boundary conditions are 

r ] = O  at y = O ,  variables+O as y+m,  

a mode satisfying r ]  = 0 exists: 

This wave is commonly known as an inertial oscillation and also decays away from the 
boundary. Like the Kelvin wave, almost the same mode as the corresponding typical 
inertial oscillation exists, even if the Coriolis parameter varies or if the region is not 
semi-infinite, as long as the boundary condition 7 = 0 is retained; the corresponding 
typical inertial oscillation may be defined as the mode with w = -flyl) for the 
boundary condition r ]  = 0 at y = y,, and as the mode with w = f l y z )  for the boundary 
condition r] = 0 at y = y 

Based on this discussion, we may classify the boundary conditions into three 
categories (table 3): closed boundaries such as v = 0 or H = 0 accompanied by a 
Kelvin wave; open boundaries such as r] = 0 or H+ 00 accompanied by an inertial 
oscillation; and neutral boundaries such as u = f iv  or a semi-infinite region 
accompanied by no boundary wave. A typical Kelvin wave satisfies the condition for 
the Kelvin mode defined in $2.2, and a typical inertial oscillation satisfies the condition 
for the mixed Rossby-gravity mode. Hence, let us regard the Kelvin wave as 
corresponding to the Kelvin mode and the inertial oscillation as corresponding to the 
mixed Rossby-gravity mode. Comparing table 2 with table 3 and considering this 
corresponence, we can understand most of the results in table 2. However, two 
disagreements still remain. In the cases where one boundary condition is r] = 0 (or 
H +  00) and the other is v = 0 (or H = 0), there is no transition mode, although a Kelvin 
wave and an inertial oscillation both exist as boundary waves. Figure 7 shows the 
dispersion relation under the boundary conditions 11 = 0 at y = y, and v = 0 at y = yz, 
when certain functions offand Hare  given. This figure shows that, although a mode 
like a Kelvin wave and a mode like an inertial oscillation both exist, they interchange 
between the limits of large and small wavenumbers (interchanged modes are sometimes 
called kissing modes and are a common occurrence), and the transition modes seem to 
disappear. 

Noting such interchanges, we can fully understand the conclusions obtained in the 
previous section by interpreting as follows. First, consider the boundary waves 

w = - J  (U,V,r])=(l,i,O)e-k”. (3.3) 

2: 
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FIGURE 7. Dispersion curves forf = 1 + Sy, g H  = 6 - 5 y , t  = 0 at y = 0 and v = 0 at y = 1. A Kelvin 
wave, for which w vanishes as k vanishes and w becomes inhite as k + co, and an inertial oscillation, 
for which w remains finite for all k ,  are interchanged around k - 2.2, w - -2.5, and transition modes 
seem to have disappeared. 

corresponding to the boundary conditions. Basically, these boundary waves become 
transition modes. (A Kelvin wave becomes a Kelvin mode and an inertial oscillation 
becomes a mixed Rossby-gravity mode.) If there are boundary waves whose dispersion 
curves overlap, however, the waves interchange on the way between the limits of large 
and small wavenumbers. (A Kelvin wave or an inertial oscillation may also interchange 
with inertial gravity waves or Rossby waves, but these interchanges do not affect the 
number of transition modes.) 

4. Extension of the theory 

We will extend the theory a little more in order to apply it to this problem as well. 

4.1. Extension to cases with a metric factor 
We discussed the fluid over a plane in $2, but the equations over a sphere include a 
metric factor, which will require modifying the equations. 

If we include the metric factor m( y), the linearized basic equations whose solutions 
are proportional to el(*=-"), which correspond to (2.1), (2.2) and (2.3), are 

The problem of free oscillations over a sphere is beyond the discussion given in $2. 

ikgH 
m 

-iwU =fv-----r], 

ik I d  
m mdy 

- i q  = -- U---(mV). (4.3) 
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The equations in the x-direction-uniform limit (corresponding to (2.6)), in the semi- 
geostrophic limit (corresponding to (2.7)), in the non-rotating limit (corresponding to 
(2.8)) and in the non-divergent limit (corresponding to (2.9)) respectively become as 
follows : 

f 2  OJ2 
mV)  --V+-V=O, 

d I d  
dy[mdy(  ] gH gH (4.4) 

Since these equations have self-adjoint forms with respect to 7 or mV, we have only to 
replace V by mV to discuss them in the same way as earlier, and we obtain the same 
conclusion on the number of zeros pertaining to U of the nth mode for each boundary 
condition. 

4.2. Limiting cases with respect to a parameter other than k 
In 52, we discussed the limiting cases with respect to the wavenumber k .  Here we will 
examine the behaviour of the modes when a parameter other than the wavenumber is 
shifted. If we non-dimensionalize the variables by characteristic values, (4. l), (4.2) 
and (4.3) become equations characterized by just one non-dimensional parameter 
6 = f: L2,/g, H* (Longuet-Higgins 1968). The shifts of a parameter other than wave- 
number are reduced to that of E. (Here,&, g,, H* and L ,  express the characteristic 
values off, g ,  H and the horizontal scale used in the non-dimensionalization, respect- 
ively.) The limiting cases lead to the same simplified equations leading up to 
(2.6H2.9) (or (4.4)44.7)), so that there is a correspondence between the limits on k 
and I/€. In this discussion, we assume that H, f and m do not vanish but remain finite 
at any boundary. Even if one of them vanishes, however, we can classify the limiting 
cases in the same way, based on the criterion w >< O(@) using a certain value of a, 
instead of classifying them by OJ -+ 0, finite or 00. 

4.3. Boundary condition of m = 0 
When the metric factor is included, besides the boundary conditions mentioned earlier, 
we can consider also the boundary condition that the metric vanishes but that the 
variables remain finite at this boundary. We will briefly examine the features of this 
boundary condition, which we will call the boundary condition m = 0 hereinafter. The 
condition m = 0 leads to 7 = 0 and mV = 0. (Physically m = 0 is a pole of the 
coordinate system and when H is not singular, a scalar variable must vanish unless 
k = 0, and a vector variable must vanish unless k = dm/dy I,-,, (or k = dm/dy 1 3.) uty 
The boundary condition rn = 0 results in the same conclusions for the condition 
7 = 0 for the semi-geostrophic limit and the non-rotating limit where the equations 
are expressed by 7, and in almost the same conclusions for u = 0 for the x-direction- 
uniform limit and the non-divergent limit where the equations are expressed by mV. 
However, a zero of U located just at the boundary in the limiting cases does not shift 
but remains there even if the parameter becomes finite. Therefore, although we had to 
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add a zero of U located near the boundary when the parameter was finite in g2.5, we 
need not here. Considering these features, we can easily see that the boundary 
condition rn = 0 is a neutral boundary like the boundary condition u = f i v .  

5. Application of the theory to well-known examples 

examples. 
In this section, we will apply the theory discussed in earlier sections to well-known 

(i) 8-channel between two rigid walls 
This problem is often considered in textbooks to explain Rossby modes and 

PoincarC modes (e.g. Pedlosky 1987). Since the boundary conditions are both u = 0, 
there are two Kelvin waves which propagate in both directions. 

(ii) Various kinds of edge and continental-shelf waves 
We will also consider models of edge and continental-shelf waves mentioned in the 

introduction. Since one of the boundary conditions is H = 0 in all cases, a Kelvin wave 
accompanies this boundary. In the model of Reid (1958) the other boundary condition 
is yl+- ao, and in that of Iga (1993) it is u = iu; they are both neutral boundaries. 
Hence only one Kelvin mode exists as a transition mode in these two cases. On the 
other hand, in Mysak’s (1968) model, since the other boundary condition is an open 
boundary of 7 = 0, an inertial oscillation accompanying this boundary also exists. The 
Kelvin wave and the inertial oscillation interchange and there is no transition mode. 

(iii) Equatorial waves 
Next we will consider the equatorial waves or the normal modes of shallow water 

waves over an equatorial P-plane with constant depth, investigated by Matsuno (1966). 
This situation does not satisfy f > 0 and we cannot directly apply the theory to this 
problem. If we separate the modes into symmetric and antisymmetric modes, however, 
the problem for the symmetric (antisymmetric) modes is equivalent to that in the region 
y > 0 bounded by the boundary condition v = 0 (7 = 0) at y = 0. We can apply the 
theory to these separated problems. Since the other boundary condition at y = yz is 
y 2 +  00 for both problems, a Kelvin mode exists for the symmetric modes, and a 
mixed Rossby-gravity mode for the antisymmetric modes. As for the equatorial Kelvin 
wave, it is often stated that the equator plays a role of a rigid wall, causing the Kelvin 
wave to exist. If we follow the explanation, we can state that the equator also plays 
the role of an open boundary, causing the mixed Rossby-gravity wave to exist as a 
boundary wave. 

It is suggested that the mixed Rossby-gravity mode defined in this paper is 
essentially a modification of an inertial oscillation, since we can find the corresponding 
typical inertial oscillation. For this equatorial so-called mixed Rossby-gravity mode, 
however, it is difficult to find such a corresponding typical inertial oscillation, because 
fvanishes at the boundary 7 = 0. We should regard this mixed Rossby-gravity mode, 
which is obtained in the situation f = df /dy~~~vl (y-y l ) :  

w = !j[k(gH)’/2 - (kzgH+ 4(gw)1/2 /3)’/2], 

(U, V ,q )  = ~(y-yy,) , i (k(gH)’/Z-~) ,~/(gH)’/2(y-~l))  e(g-vl)*/zAi, (5.1) 

where = kH)””/P, 8 = df/dY ly=y,, 
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as the typical inertial oscillation for the cases 7 = 0 at y = y1 andfly,) = 0, in ;h esame 
way as we considered the Kelvin mode present in the situation 

H = (-dH/dYlYPYB)(Y2-Y) 

as the typical Kelvin wave for the case H = 0 at y = yz .  

(iv) Free oscillations on a rotating sphere 
With the extended theory in 94, we can also apply our theory to the free oscillations 

on a sphere investigated by Longuet-Higgins (1968). We will separate this problem into 
those for symmetric and antisymmetric modes, as we did for the equatorial waves. The 
boundary conditions for the symmetric modes are v = 0 and m = 0, and for the 
antisymmetric modes 7 = 0 and m = 0. Since the boundary conditions v = 0 , ~  = 0 and 
m = 0 are closed, open and neutral boundaries, respectively, a Kelvin mode and a 
mixed Rossby-gravity mode appear from the symmetric and antisymmetric problems, 
respectively. 

6. Conclusions 
We have investigated generally the modes of shallow water waves in a channel 

wherein the Coriolis parameter f and the depth H vary in the y-direction (but f and 
(d/dy)Cf/H) are positive). As a result, we have proved mathematically the following 
features . 

(i) In rotating shallow water system, there always exist families of Poincark modes 
propagating in the positive and negative directions, and a family of Rossby modes 
whose phase propagates slowly in the negative direction. 

(ii) Under certain boundary conditions, there sometimes also exist Kelvin modes or 
mixed Rossby-gravity modes whose features vary as the wavenumber (or another 
parameter) shifts. 

We can interpret these results as follows. In a rotating shallow water system, there 
exist inertial gravity waves and Rossby waves. Moreover, if a boundary condition is a 
closed boundary, a Kelvin wave accompanying this boundary appears, and if a 
boundary condition is an open boundary, an inertial oscillation appears. Rossby 
waves, inertial gravity waves, Kelvin waves and inertial oscillations correspond in the 
actual normal modes to Rossby modes, Poincark modes, Kelvin modes and mixed 
Rossby-gravity modes, respectively. Nevertheless, when two dispersion curves cross, 
they interchange in the actual dispersion relation. In particular, if a Kelvin wave and 
an inertial oscillation interchange, the transition modes disappear. By applying this 
theory, we can systematically understand Kelvin modes and mixed Rossby-gravity 
modes in well-known problems. 

The author thanks Professor R. Kimura for his encouragement throughout this 
study. The IMSL Library was used to solve the eigenvalue problem and the NCARG 
Library to draw figure 7. 

Appendix A. Zeros of U which appear or disappear in pairs 
When we discussed the conservation of zeros of U (which we call N, hereinafter) in 

$2.3, we did not completely deny the possibility of pairs of zeros of U appearing or 
disappearing in the interior region. When that happens, U and dU/dy simultaneously 
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vanish there. From (2.1), (2.2) and (2.3), we obtain a relation to express dU/dy in terms 
of V and 7: 

dU 1df kgdH 
G - * ( w d y  - 1  --+k ) V+ ( w  --- dy f ) 7 *  

Using (2.1) and (A l), U = dU/dy = 0 would usually lead to V = 7 = 0, which implies 
a null eigenvector. Therefore, such an appearance and disappearance of a pair of zeros 
usually does not occur. However, where the determinant of the coefficient matrix 
(l/w) dCflH)/dy + k/H+f2/kgH2 vanishes, V and r] do not necessarily vanish. Hence 
the number of zeros of U is not strictly conserved, and the discussion in the text would 
lose its validity. Then what kind of modification should we add in order to make 
the discussion exact? 

Basically, the zeros of U and the zeros of I/ align alternately for the following reason. 
Eliminating r ]  from (2.1) and (2.3), we find (kgHi) d V/dy = (k'gH- d) U + wfi V. From 
this relation, we can see that (k2gH-w2) U has opposite sign at the points where a 
certain zero of V exists and where the neighbouring zero exists. Particularly, unless 
k2gH-u2 vanishes, a zero of U always exists between two neighbouring zeros of V. 
Similarly, unless w2 - f vanishes, a zero of U always exists between two neighbouring 
zeros of 7, and unless ( l /w)dCf lH) /dy+k /H+f2 /kgH2 vanishes, a zero of V always 
exists and, as does a zero of 7 between two neighbouring zeros of U. 

If a pair of zeros of U appears in the interior, three zeros of U align in succession. 
To exclude such additional zeros of U, we count the zeros of U as follows: If zeros of 
U align in succession, or zeros of V do, continue to remove these zeros by pairs. When 
the zeros of U and V align alternately after repeating this operation, we count the 
number of remaining zeros of U, which we will call hereinafter. Even if 
wavenumber k shifts, a zero of U never change places with a zero of V, otherwise U 
and V would simultaneously vanish when they are replaced, which would lead to a null 
eigenvector. Further, even if zeros of U or V appear or disappear in the interior region, 
they always do so in pairs. Therefore, the Nu, never alter, and are conserved strictly. 
If we define 

We counted the numbers of zeros of Uin hmiting cases in $2.5, but we must ascertain 
which of N,, Nu, and Nu, is strictly equal to what we counted in each limiting case. 

(i) The limit k+O, u+Jinite 
Obviously, here we counted Nu. Since r ]  = (- l /f)  dU/dy, an odd number of zeros 

of 7 exists between two neighbouring zeros of U, and hence Nu equals Uu,7. Moreover, 
zeros of V located exactly where zeros of U exist when k = 0 move a little from the 
zeros of U if k becomes small but finite. While k is small enough, k2gH-wa never 
vanishes in the region, and all the zeros of V move in the same direction. Therefore N, 
also equals Nu,". 

(ii) The limit k + 0, w + 0 
Since U = (-gH/f)dr]/dy, an odd number of zeros of U exists between 

two neighbouring zeros of 7. Hence what we counted is Nu,7: Further, it equals also 
Nu,", because -iV and 7 have the same sign where U vanishes (since the relation 
i V = (- kgH/f) r ]  holds there). 

in the same way, the Nu,Ir are also conserved. 

(iii) The limit k+ 00, Iwl+ co 

the limit k+  0, w+ finite, that we counted N,, which is also equal to Nu, and 
Considering that w2 - f never vanishes in the region, we can see, in the same way as 
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(iv) The limit k + 00, w +finite 
In the same way as the limit k --f 0, w + 0, what we counted equals Nu, v, and also 

We can see from these consideration that what we counted in each limiting case 
equals both Nu,v and Nu,7.  Further, as mentioned above, both Nu,v and Ny,II  are 
strictly conserved. Therefore, if we use Nu,v or Nu,?/ instead of Nu, the discussion in 
the text becomes exact. 

Nu,?/- 

Appendix B. Cases where the number of zeros of U alters 
A zero of U may enter or leave across the boundaries in two exceptional cases: the 

case where the boundary condition at y = y, is 7 = 0 and simultaneously f l y , )  = 0 
holds; and the case where the boundary condition at y = y, is H = 0. We will examine 
these cases and show that the number of transition modes under these boundary 
conditions is the same as that under the boundary conditions 7 = 0 (andfly,) =l= 0) and 
v = 0, respectively. 

First, we will consider the case where the boundary condition at y = y I  is 7 = 0 and 
f happens to vanish there. Since U = 0 always holds at this boundary from (2.1), 
dU/dy also vanishes when a zero of U crosses this boundary. If kw + -df/dy (,-,,, this 
does not occur; otherwise, using (A l), it would lead V = 0 and the eigenvector would 
be a null vector. Since df/dyl,-,l > 0, zeros of U do not cross the boundary for the 
modes with w > 0 and all the results are the same as those for q = 0 (and f l y , )  + 0). 
Nevertheless, for the modes with w < 0, a zero of U enters or leaves across the 
boundary at kw = - df/dy In other words, when a dispersion curve crosses 
kw = -df/dyl,_,l, the number of zeros of U either increases or decreases by one. 
(Zeros of V and 7 never cross this boundary. Hence, even if a dispersion curve crosses 
the curve kw = -df/dyJ,,,l many times, Nu,v  and Nu,?/ do not change if it crosses 
an even number of times and they increase or decrease by one if it crosses an odd 
number of times. Whether they increase or decrease depends on whether a zero of V 
and 7 exists closer to the boundary than any zero of U.) 

Moreover, we should examine the number of zeros of U in each limiting case under 
the boundary condition f ly,)  = 0, 7 = 0, in comparison with the boundary condition 
f ly,)  =l= 0, r] = 0. The result is as follows: 

(i) The limit k --f 0, w +f;nite 
The number of zeros of U in the case f ly,)  = 0 is the same as that in the case 

f l y , )  * 0- 

(ii) The limit k + 0, w+ 0 

9 0. 

(iii) The limit k -+ co, 101 -+ 00 

In the case Ay,) = 0, the zero of U located at y = y, in the limit k+ 00 remains 
exactly at y = y, even when k becomes finite. Hence, although we added a zero ap- 
proaching the boundary when we counted the zeros of U for finite k, we need not add 
such a zero now, and the number of zeros of U is less by one than in the casefly,) 9 0. 
There is a zero of V closer to y = y, than any zero of U, and further, if we consider 
a small but finite Ilk, there is also a zero of 17 closer to y = y1 than any zero of U. 
Therefore, when a dispersion curve starting here crosses the curve ko = - df/dy Jy-ll, 

both NU,v  and Nu,7 increase by one. 

The number of zeros of U in the case f ly,)  = 0 is the same as that in the case f ly,)  
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FIGURE 8. Sketches of the dispersion curves of modes with w < 0 in the case g = 0 at y = y1 and 
fly,) = 0. Numbers indicate how many zeros of U exist in the interior region. In this figure, we 
show the case where ko, < - df/dy Jy-yl holds for n = 0, l  in the limit k +- 00, o + finite, but even 
when more modes, less modes or even no mode satisfy kw, c -df/dy (y-y,, we can draw a figure in the 
same way. In any case, the existence of transition modes is the same as for the case 7 = 0 at y = y, 
in figure 6. 

(iv) The limit k +  00, w+jinite 
At y = y, ,  d V/dy exactly vanishes. Since d2 V/dy2 = (k/wgH) (wk + df/dy) V holds 

there, there are the same number of zeros of U as in the case fly,) + 0 if the relation 
kw > -df/dyl,_,l holds, and one more zero than in the case Ay, )  9 0 if 
ko < -df/dyl,-,l. In the latter case, this additional zero of U is located closer to 
y = y ,  than any zero of V and 9.  Thus, when a dispersion curve starting here crosses 
kw = -df/dyJ,-,l, Nu,v and Nu,q decrease by one. 

From these considerations, the connection between the limits of large and small 
wavenumbers from the dispersion curves of the modes with w < 0 under the boundary 
condition of g = 0 annfly,) = 0 at y = y , ,  is modified to that shown in figure 8. The 
number of transition modes is, however, the same as that under the boundary 
condition g = 0 and fly,) + 0. 

As for the boundary condition H = 0 at y = y,, using (A 1) and dH/dy Itl-yz < 0, 
zeros of U do not cross the boundary for the modes with w > 0. For the modes with 
w < 0, however, when a dispersion curve crosses fw = kgdH/dyI,,, , the number 
of zeros of U either increases or decreases by one. Under the boundary condition 
H = 0 in comparison with the boundary condition t, = 0, the number of zeros of U in 
each limiting case becomes as follows. 

(i) The limit k+  0, w+$nite 
The zero of U located at y = y z  in the limit of k+O remains exactly at y = y ,  even 

when k becomes finite. Hence, although we added a zero approaching the boundary 
when we count the zeros of U in the interior for finite k, we need not add such a zero 
now, and the number of zeros of U is less by one than in the case u = 0. There is a zero 
of 9 closer to y = y ,  than any zero of U, and further, if we consider a small but finite 
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FIGURE 9. Sketches of the dispersion curves of modes with w < 0 in the case H = 0 at y = y,. Numbers 
indicate how many zeros of U exist in the interior region. In this figure, we show the case where 
f w ,  < kgdH/dy Iu-yz holds for n = 0 , l  in the limit k + 0, w -+ 0, but even when more modes, less 
modes or even no mode satisfy fw.  < kgdH/dy (y-ue, we can draw a figure in the same way. In any 
case, the existence of transition modes is the same as for the case v = 0 at y = y, in figure 6. 

k, there is also a zero of V closer to y = y2 than any zero of U. Therefore, when a 
dispersion curve starting here crosses the curve fo = kg dH/dy ly'lp, both Nu, and 
Nu,q  increase by one. 

(ii) The limit k -+ 0, w + 0 
Since dr]/dy = ( - f k / w )  r ]  + Cf"/g)(dH/dy)-l holds at y = y2, there is the same 

number of zeros of Uas in the case of u = 0 if f w  > kg dH/dy J,-yI, and there is one more 
zero than in the case of u = 0 iffw < kgdH/dy . In the latter case, this additional 
zero of U is located closer to y = y2 than any zero of r] and V.  Thus, when a dispersion 
curve starting here crosses the curve f w  = kgdH/dy(,,,I, both Nu,v and Nu,q  decrease 
by one. 

(iii) The limit k+ 03, [w[  -+ 03 

The number of zeros of U in the case H = 0 is the same as that in the case 
u = 0. Since w - O(k1I2) as k --f 00, [ fw[  becomes smaller than IkgdH/dyl,,,J for large 
enough k. 

(iv) The limit k --f 00, w +finite 
The number of zeros of U in the case of H = 0 is the same as that in the case of 

v = 0.  
The connection between the limits of large and small wavenumbers from the 

dispersion curves of the modes with w < 0 under the boundary condition H = 0 at 
y = y2, is modified to that shown in figure 9. The number of transition modes is, 
however, the same as that under the boundary condition o = 0. 
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Appendix C. The number of zeros of the eigenfunction for extended 
S t urm-Lio uville problems 

We will prove the theorem in $2.4 on the number of zeros in the eigenfunction for 
the extended Sturrr-Liouville problem. All of the differential equations in the interior 
region for the eigenvalue problems which we consider now have the form 

where P(Y)  2 0, o w  2 0, 4(Y) 2 0. 

The boundary conditions at y = yn (n  = 1,2) are 

where 

cos en - dQ, - - sin en Q, + Ah, cos en Q,, 

dY 

o G el < ;IT, --;IT G e, < 0, 
h, > 0 (when D = 0 in the limit k-+ 0, w-+ 0), 

h, < 0 (Otherwise), 

h, < 0 (when 7 = 0 in the limit k-+ 00, w+ finite), 

h, 2 0 (otherwise). 

For the boundary condition at y = yl, we will consider here cases other than D = 0 in 
the limit k --f 0, w -+ 0. In the case D = 0 in the limit k -+ 0, w -+ 0, we have only to replace 
y, and y ,  to discuss it in the same way. 

First, we will consider the function d y ,  A) ,  the solution satisfying the boundary 
condition at y = y1 and the differential equation with a parameter A, but not necessarily 
satisfying the boundary condition at y = y 2 :  

where 0 < 0, < $c, h < 0. We can calculate the value of [(+(y, h)/ay)/rp(y, A)]y-y,  from 
this function Q,. If this value is equal to tan 8, +Ah,, the parameter A is an eigenvalue 
of this problem. 

Let us define a function f l y ,  A)  as f l y ,  A) = tan-'[p(+/ay)/~,], where we will choose 
the phase so that the function f l y ,A)  becomes continuous also across the zeros 
of q, and satisfies -in <flyl, A) < in (figure lo). Then, the function AA) defined as 
Ah) =fly , ,  A) = tan-l[p(&p/~y)/~]y,,e behaves as follows. 

LEMMA 1.  Ah) is a monotonically decreasing function. 

Proof. Integrating (C 3 )  I,++ x p(y, A,)- (C 3) I,+-,+, x ~ ( y ,  A,) from y = y1 to y, ,  using 
the boundary condition at y = y1 and letting A, + A,, we obtain 

Since the right-hand side is negative, [p(&p/~yY)/~,],,,, is a decreasing function of A 
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FIGURE 10. Values of functions f l y ,  A) and f l A )  when the function d y )  is given. 

except at the points where dy , ,  A) vanishes. Moreover, since we have chosen the phase 
so that Ah) becomes a continuous function even if &y2,h) passes zero, Ah) is a 
monotonically decreasing function with respect to A. 

LEMMA 2.f(A)+-co as h++co. 

Proof. By transformation @ = ( p p ) ' / 4 ~ ,  5 = P ( p / ~ ) l / ~ d y ,  equation (C 1) becomes 

a2@/ag - r@ + A@ = 0, 

where r = (d/dS) ((pp)1/4)/(pp + q/p .  By this transformation, the interval [ y l , ya ]  is 
transformed to [&, &] (5, = 1 vn@/p)l'zdy), and zeros of Q, in the interval [yl,yJ to 
zeros of $ in the interval [t1,&J. Since in the limit A++m the equation is 
approximated as 

the solution $ becomes 
$ N sin (h1I2t+ a), 

and the number of zeros of @ in the interval [El, 6.j increases infinitely with h + + co, 
and so does the number of zeros of Q, in the interval [y,, y,], which means Ah) -+ - co. 

az@/ag + A@ - 0, 

LEMMA 3. 0 <AO) < fn: holds 

Proof. We can prove this by showing that Q, has no zero in the region y1 < y < y ,  and 
satisfies p(&p/ay)/cplv-# > 0. Since the boundary condition at y = y1 becomes 
cos O,(&p/ay) = sin 8,cp for A = 0, Q, satisfies either 

ap)/aYIpu, 2 0, d Y l )  2 0 or & p / a Y l p y l  0, Q,(Yl) 0, 
and we do not lose the generality by assuming the former case. Suppose that Q, had 
zeros in the interval y1 < y < y,. Then, since Q, is positive in y1 < y < y3 (where ya is the 
zero closest to yl) ,  we would find 

This inequality and conditions ap)/ay l y - v ,  2 0, q(yl) 2 0 would lead to Q, I v T v a  > 0, 
which is inconsistent with the assumption. Hence, Q, has no zero in the interval 
y1 < y < y,. Since Q, remains positive throughout this interval, so does p dtp/dy; these 
also hold at y = yz .  

LEMMA 4. p(ap) /ay) /~ , l~=~~ - 0((-h)'l2) andAA)+:n as A+-co. 

Proof. We can show that Q, has no zero if h < 0 in the same way as in lemma 3. 
this implies alsoflh) +in:. By Therefore, if we show that p(+/i3y)/q Idl-Yn - 0(( - 

the same transformation as in lemma 2, we find 
@ - e(-A)''*C. 
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of zeros 

FIGURE 1 1. Graphs of Ah) and g(A) = tan-"p(y,) (sin 8, + hh,)/cos O,] for various boundary 
conditions at y = y e .  The value of h at the point where they intersect gives the eigenvalue, and we can 
see the number of zeros from the value of JA) there. (If - (n + 4) IF < Ah) < - (n -4) IF holds, there 
exist n zeros.) 

This is valid also at y = yz. 
Comparing the graph off lh)  with that of g(h) = tan-' [&,)(tan O,+Ah,)] (keeping 

in mind that p(y,)  (tan 8, +Ah,) becomes O( - A) as h + - oo), we can easily see that the 
eigenvalues mentioned in the theorem at least exist (figure 11). We have only to show 
that no other eigenvalue exists to complete the proof. This is obvious from the 
following lemma. 

LEMMA 5.  df(h)/dh 5 dg(h)/dA for h 8 0, when h is one of the eigenvalues of this 
problem. 

Proof. To prove this, first of all we will show that 
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for h 3 0 if h is one of the eigenvalues of this problem. Integrating (C 1) x I&) from 
y = y1 to y ,  and using the boundary conditions at y = y, ,  y = y,, we obtain 

which gives (C 6). Then, using (C 5) ,  we obtain 

Appendix D. Zero of U located at the boundary in limiting cases 
We will discuss here the cases where a zero of U exists exactly at the boundary of the 

region in the limiting case; we must ascertain whether such a zero of U is in the interior 
or exterior region while the parameter remains finite. 

The cases where U vanishes at the boundary consist of the following: the boundary 
condition becomes V = 0 in the limit k -t 0, w + finite; the boundary condition becomes 
dr]/dy = 0 in the limit of k+O, w - t  0; the boundary condition becomes r] = 0 in the 
limit k+ 00, Iwl+ 03 ; and the boundary condition becomes dV/dy = 0 in the limit 
k -t co, w -+ finite. In fact, the following cases come under one of these conditions : o = 0 
or u = +iv in the limit of k+O, w-tfinite and 7 = 0 or H - t  co in the limit of k+ co, 

We have only to compare the sign of dU/dy at the boundary to the sign which U has 
there before the parameter reaches the limit, in order to judge the behaviour of such 
a zero approaching the boundary. If the signs of U(yl) and dU/dy Jy-ll are opposite, 
there is a zero of U approaching y = y1 from the interior, and if they are the same there 
is no such zero in the interior, and vice versa for the boundary of y = y z .  

For the boundary condition v = 0 in the limit k -+ 0, w -+ finite, for example, if we 
consider a small but finite k, the value of U is calculated from V and r ]  as 

Since V vanishes exactly at the boundary, U(boun&ry) is equal to (kgH/w) r](boun&ry)' 

Using also the relations of U = (if/w) Vand r] = (- l/w) d/dy(iV), we obtain the result 
that a zero approaching y = y ,  exists if w > 0, and that a zero approaching y = ye exists 
if w < 0. 

For the boundary condition u = +_iv in the limit k+O, w-tfinite, since the relation 
U = & i V holds at the boundary, we can obtain, in the same way, the result that a zero 
approaching y = y1 exists if w >flyl), and that a zero approaching y = y ,  exists if 
w < -fly,). Consequently, if the boundary condition at y = y1 is u = iv, the number of 
zeros of the modes leaps at w =f ly , )  ; the mode with the eigenvalue superior and closest 
tof(yl) has two more zeros of U than that with the eigenvalue inferior and closest to 
f l y , ) .  For this boundary condition, however, there is another special eigenfunction 
with the eigenvalue of w =fly,), which fills this gap. If the boundary condition at 
y = y ,  is u = -iv, likewise, the number of zeros of the modes leaps at w = -fly,), but 
the other eigenfunction with the eigenvalue of w = - f ly , )  fills this gap. 

For the boundary condition r] = 0 or H - t  00 in the limit k-+ 03, Iwl+ 00, we obtain 
the result that a zero approaching y = y1 exists if w -= 0, and that a zero approaching 
y = y, exists if w > 0. 

Iwl --f 0O. 

u = ( i f /w)  V+ ( k g H / o )  r ] .  
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